Sex-specific OCT characterization of Intravascular Lithotripsy for Treatment of Calcified Coronary Lesions Patient-level Pooled Analysis of Disrupt CAD OCT Sub-studies

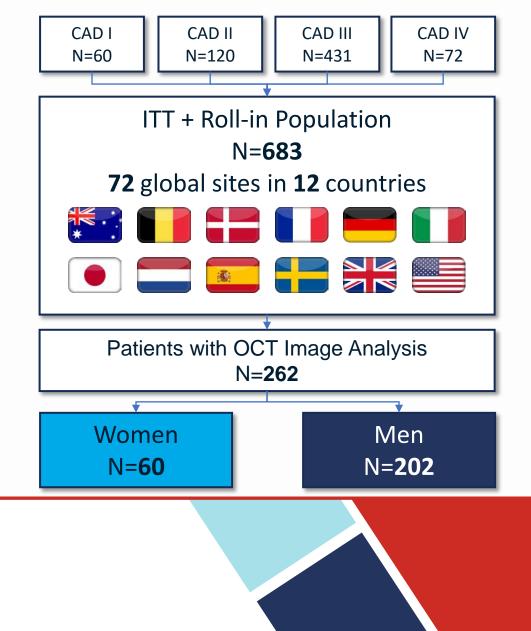
Nadia R. Sutton, MD, MPH

Assistant Professor, Division of Cardiovascular Medicine

University of Michigan, Ann Arbor, MI

Background

- Women with moderate to severe coronary artery calcification (CAC) undergoing PCI are at increased risk for adverse clinical outcomes¹
- Women have high procedural complications following atheroablative treatment of calcified lesions²
- In contrast, intravascular lithotripsy (IVL) is associated with low procedural complication rates in both women and men³
- In this sub-analysis, OCT characterization of coronary artery calcification was performed to evaluate sex-specific calcium morphology and stent-related outcomes following IVL treatment


¹Giustino et al., JACC Cardiovasc Int 2016; ²Ford et al., Catheter Cardiovasc Interv 2020; ³Hussain et al., JSCAI 2022

Pooled Analysis Study Design

- **Objective:** To evaluate sex-specific calcium morphology and stent-related outcomes following IVL treatment
- Perform sub-analysis of the individual patient-data (IPD) pooled analysis of the Disrupt CAD I-IV OCT sub-studies
 - Uniform study criteria, endpoints, adjudication, follow-up
- OCT core-lab assessment:
 - Calcium morphology: Calcium angle, thickness, presence of calcified nodules
 - Evaluate visible calcium fracture
 - Post-stent findings
- Angiographic safety and effectiveness

Individual Patient-data Pooled Analysis

Disrupt CAD I-IV: OCT Sub-studies

	CAD I	CAD II	CAD III	CAD IV	Pooled		
Enrollment	Dec 2015 – Sep 2016	May 2018 – Mar 2019	Jan 2019 – Mar 2020	Nov 2019 – Apr 2020	Dec 2015 – Apr 2020		
Study design	Prospective, multi-center, single-arm						
ITT (N)	60 ¹	120 ³	384 ⁴	64 ⁵	628 ⁶		
OCT Analysis [*] (N)	28 ²	57	106†	71 ⁺	262		
OCT core laboratory	Cardiovascular Research Foundation						
Target lesions	Severely calcified [*] , de novo coronary artery lesions						
Target lesion RVD	2.5mm – 4.0mm						
Target lesion stenosis	≥50% and <100%	≥50% and <100%	≥70% and <100%	≥70% and <100%			

*Patient enrollment in OCT sub-studies was open to all sites participating in the Disrupt CAD studies that routinely perform OCT imaging. [†]Includes patients from the roll-in cohort. ¹Brinton et al. Circulation 2019;139:834-836, ²Ali et al. J Am Coll Cardiol Img 2017;10:897-906, ³Ali et al. Circ Cardiovasc Interv 2019;12:e008434, ⁴Hill et al. J Am Coll Cardiol 2020;76:2635-46, ⁵Saito et al. Circ J 2021;85(6):826-33, ⁶Kereiakes et al., J Am Coll Cardiol Intv 2021;14:1337-48

Baseline Patient & Lesion Characteristics

Characteristic	Women N=60	Men N=202	P value	Core Lab Analysis	Women N=60	Men N=202	P
Age	76 ± 9	71 ± 9	<0.001	Target vessel			
-	070/	000/	0.54	LAD	67%	66%	
Hypertension	87%	82%	0.54	LCx	7%	8%	
Hyperlipidemia	88%	83%	0.40	RCA	27%	25%	
Diabetes mellitus	42%	37%	0.58	LM	0%	1%	
Diabeles menilus	4270	5770	0.56	RVD, mm	2.7 ± 0.4	3.0 ± 0.5	<
Prior MI	17%	26%	0.18	MLD, mm	1.0 ± 0.4	1.1 ± 0.4	
Prior CABG	2%	7%	0.22	Diameter stenosis	62 ± 13%	63 ± 11%	
	270	770	0.22	Lesion length, mm	25 ± 11	26 ± 11	
Renal insufficiency*	28%	20%	0.26	Calcified length, mm	38 ± 18	44 ± 22	
Defined as eGFR <60ml/min/1.73m			-	Severe calcification ⁺	97%	98%	
formula; [†] Defined as radiopaque de of the arterial wall. RVD: reference v		-		Bifurcation lesion	25%	34%	

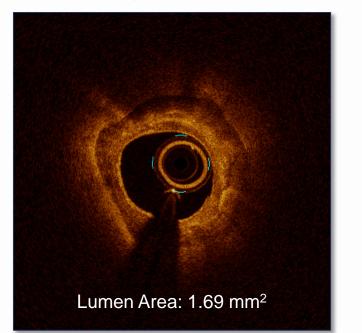
Similar stenosis and calcium severity in women and men

Larger RVD and calcified length in men

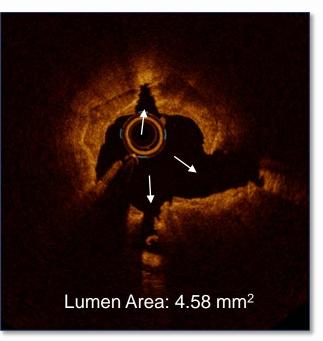
Society for Cardiovascular Angiography & Interventions

SCA

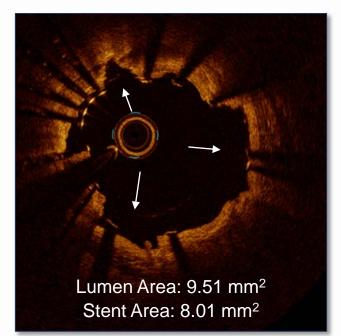
Procedural Characteristics


Characteristic	Women N=60	Men N=202	P value	IVL Balloon Use ■ Women ■ Men		
Total procedure time, min	65 ± 27	71 ± 33	0.19	P = 0.14		
Pre-dilatation	38%	32%	0.53	5.9 6.0		
IVL delivery	100%	100%				
IVL catheters	1.3 ± 0.6	1.5 ± 0.8	0.25			
IVL pulses	79 ± 43	90 ± 53	0.15			
Post-IVL dilatation	7%	9%	0.69	P = 0.03		
Number of stents	1.4 ± 0.6	1.3 ± 0.5	0.48	1.3 1.2		
Stent delivery	100%	100%				
Post-stent dilatation	98%	95%	0.46	Max IVL pressure IVL B:A Ratio		

Similar procedural approach in women and men



Multi-plane and Longitudinal Calcium Fracture


Pre-procedure

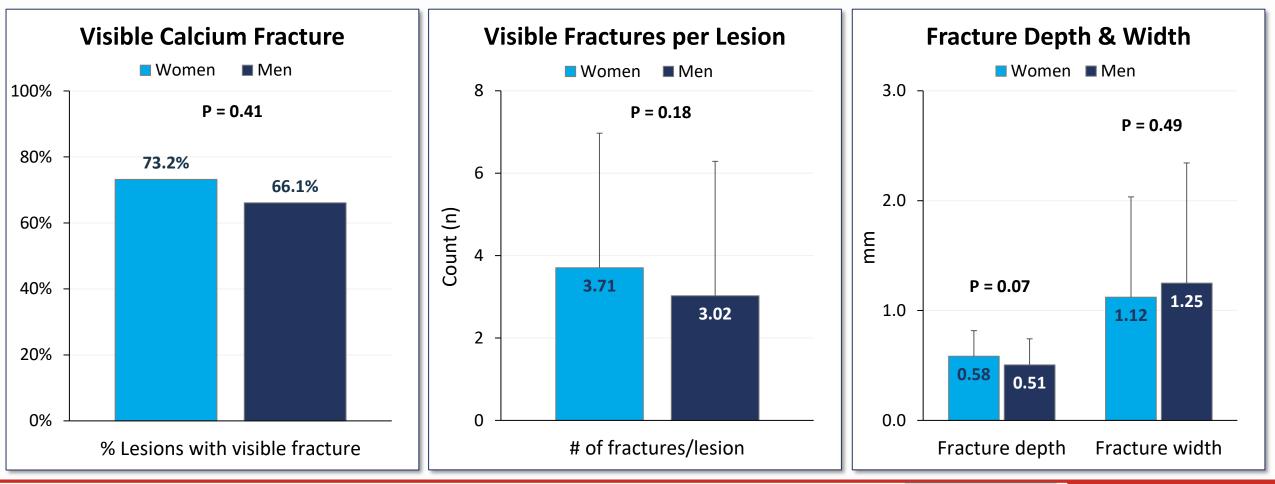
Post-IVL

Post-stent

Baseline OCT Characteristics

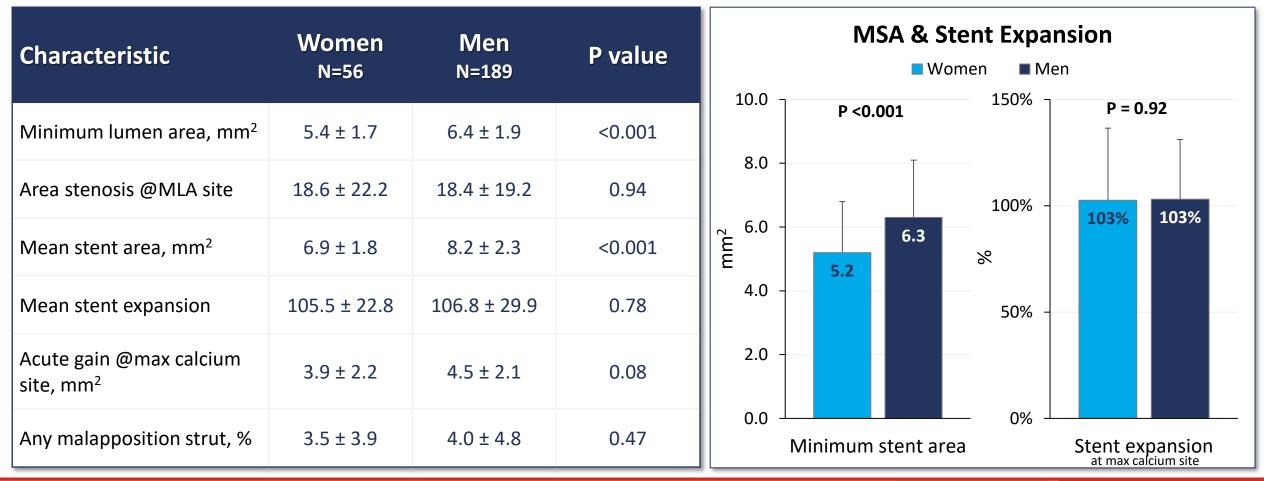
Core lab adjudicated

Characteristic	Women _{N=53}	Men _{N=195}	P value	Max Continuous Calcium Angle <180° ■ 181° to 359° ■ 360°				
				100% ¬	P = 0.6	P = 0.68		
Minimum lumen area, mm ²	1.72 ± 0.69	2.14 ± 1.01	<0.001	80%	31%	28%		
Area stenosis @MLA site	73.2 ± 10.8	71.5 ± 11.7	0.38	60% -	51%	46%		
Max calcium angle, °	274 ± 78	269 ± 82	0.65	40% -				
Max calcium thickness, mm	0.92 ± 0.24	0.97 ± 0.25	0.26	20% -	18%	26%		
Lesions with calcified nodules	17%	23%	0.44	0%	Women	Men		


Similar calcium morphology characteristics

Visible Calcium Fracture Characteristics

Core lab adjudicated


Similar visible calcium fracture between women and men

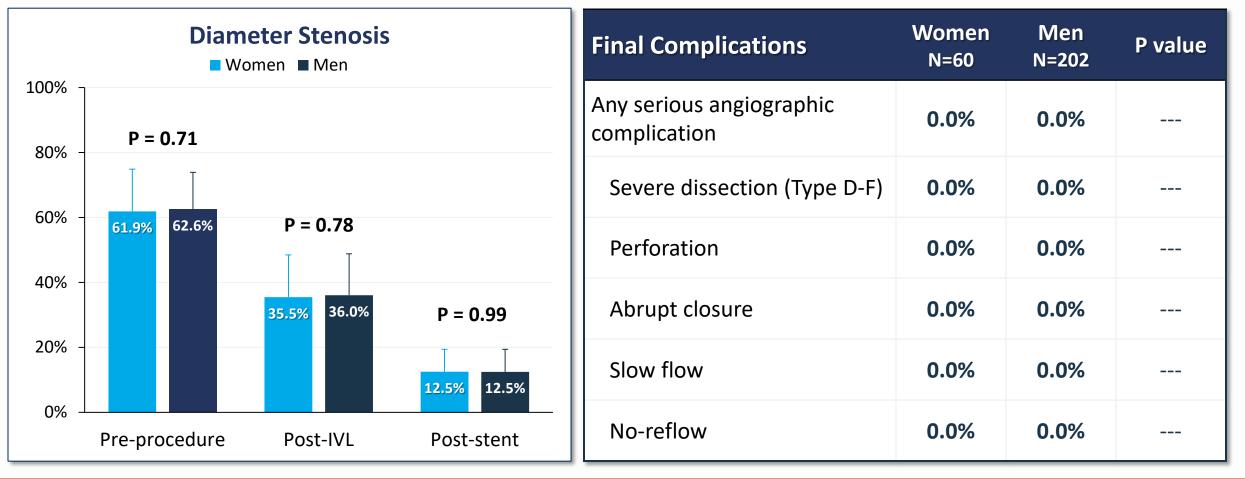
Society for Cardiovascular Angiography & Interventions

SCA

Post-stent OCT Measurements

Core lab adjudicated

Similar stent expansion in women and men


Larger MLA and MSA in men driven by larger RVD

Society for Cardiovascular Angiography & Interventions

CA

Final Angiographic Outcomes

Core lab adjudicated

Similar procedural safety and stenosis reduction

Conclusions

- The present individual patient data pooled analysis represents the largest analysis of sexbased OCT findings following IVL treatment
- Calcium morphology and visible calcium fracture characteristics were similar between women and men
- Excellent stent deployment and safety outcomes were observed in both groups
 - Larger absolute values of MSA and MLA in men driven by larger RVD
 - Stent expansion was similar between the two groups (103% vs 103%, P=0.92)
 - No angiographic complications were observed in both groups
- These OCT findings support prior reports of consistent clinical safety and effectiveness between women and men following IVL treatment

